REACHING THE THIRD 90: IMPLEMENTING HIGH QUALITY VIRAL LOAD MONITORING AT SCALE

Key Strategic Decisions for Countries Designing & Scaling-Up Viral Load Services

<table>
<thead>
<tr>
<th>Key Strategic Decisions</th>
<th>Common Options</th>
<th>Country Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. How will leadership and/or governance of routine viral load service roll-out be</td>
<td>• Viral load technical working group</td>
<td>• Ethiopia has a Viral Load Technical Working Group chaired by the Ethiopian Public Health Institute (EPHI)</td>
</tr>
<tr>
<td>organized?</td>
<td>• Viral load roll-out coordinators</td>
<td>• Kenya national- and county-level HIV Care & Treatment Technical Working Groups responsible for leading routine viral load service roll-out</td>
</tr>
<tr>
<td>2. What monitoring and evaluation/laboratory information strategy will be implemented?</td>
<td>• Online dashboard</td>
<td>• Swaziland’s Ministry of Health provides technical guidance for viral load roll-out; a technical working group also supervises key decisions</td>
</tr>
<tr>
<td></td>
<td>• Paper register/log book</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Use of unique patient identifiers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Site readiness tool</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethiopia uses a national level database among regional laboratories, and a standard viral load request form at the facility level (no other M&E systems at the facility level)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kenya relies on a national web-based system to monitor the viral load cascade; at the facility level, a standard viral load request form and log book are used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Malawi has a national electronic medical record, which is strengthened by the use of log books to track all viral load specimens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Swaziland is developing a national system to monitor the viral load cascade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tanzania utilizes an online, public database to track aggregate data</td>
</tr>
<tr>
<td>3. How and when will people living with HIV/AIDS be involved?</td>
<td>• Technical working group</td>
<td>Ethiopia involves PLHIV via a national technical working group (NEP+)</td>
</tr>
<tr>
<td></td>
<td>• Coalition</td>
<td>Kenya has civil society organizations led by the National Empowerment Network of PLHIV in Kenya (NEPHAK) and the Women Fighting AIDS in Kenya (WOFAK)</td>
</tr>
<tr>
<td></td>
<td>• Civil society organization</td>
<td>Swaziland’s Viral Load Technical Working Group includes at least one expert client; the Swaziland National Network of People Living with HIV/AIDS (SWANNEPHA) assists with facility-based tasks</td>
</tr>
<tr>
<td>4. Will the roll-out of routine viral load services be implemented using a phased or</td>
<td>• Prioritize populations, such as pregnant women or children</td>
<td>Ethiopia used a global roll-out approach, with staggered installation of testing machines</td>
</tr>
<tr>
<td>global approach?</td>
<td>• Start with specific geographic regions</td>
<td>Swaziland prioritizes women and children; they also prioritize roll-out based on facility readiness/capacity to implement viral load testing</td>
</tr>
<tr>
<td></td>
<td>• National roll-out</td>
<td></td>
</tr>
<tr>
<td>5. What will be the standard viral load test frequency for the general population?</td>
<td>• WHO guidelines</td>
<td>Ethiopia recommends routine viral load testing at six and 12 months after initiation of ART, and annually thereafter</td>
</tr>
<tr>
<td></td>
<td>• Recommended for ART monitoring and identification of treatment failure</td>
<td>Kenya recommends viral load testing at six and 12 months after ART initiation, and every 12 months thereafter if test results remain <1,000</td>
</tr>
<tr>
<td>Key Strategic Decisions</td>
<td>Common Options</td>
<td>Country Examples</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 6. What will be the standard viral load test frequency for infants and children? | » Special guidelines
» Same as general population | • Ethiopia recommends a baseline viral load test for HEIs six months after ART initiation and annually thereafter (no special recommendations for other children)
• Kenya recommends baseline viral load test for HEIs following a positive PCR test; baseline viral load specimen can be drawn before or at the time of ART initiation (no special recommendations for other children)
• Swaziland recommends baseline viral load test for infants and children six months after ART initiation and every six months thereafter |
| 7. What will be the standard viral load test frequency for pregnant and lactating mothers? | » Special guidelines
» Same as general population | • Ethiopia and Tanzania use standard viral load testing frequency for general population, including pregnant and lactating women
• Kenya recommends viral load testing for pregnant and breastfeeding women six months after ART initiation. (1) If test results are ≥1,000 copies/mL, enhance adherence and repeat testing after one month; if test results are still ≥1,000 copies/mL, switch regimens. (2) If test results are <1,000 copies/mL, repeat test every six months until end of breastfeeding
• Swaziland recommends viral load testing for pregnant and breastfeeding women six months after ART initiation and every six months thereafter until end of breastfeeding |
| 8. Will plasma or dried blood spots be used for routine viral load testing? | » Plasma
» DBS
» Both | • Ethiopia started with plasma only, but now utilizes plasma and DBS
• Kenya utilized plasma and DBS specimens
• Swaziland prefers plasma specimens; they use DBS specimens for children and in facilities without the capacity to manage plasma (no storage/centrifuge) |
| 9. Will machines to process specimens be purchased or rented? | » Purchase all machines
» Rent all machines
» Mix | • Ethiopia rents all machines
• Swaziland plans to purchase at least two machines and rent others, as needed |
| 10. Will the laboratory system be centralized or decentralized? | » Centralized
» Decentralized
» Both | • Ethiopia has seven main decentralized laboratories
• Kenya has seven decentralized laboratories
• Swaziland has identified two laboratories for decentralization, but has yet to do so |
<table>
<thead>
<tr>
<th>Key Strategic Decisions</th>
<th>Common Options</th>
<th>Country Examples</th>
</tr>
</thead>
</table>
| 11. How will specimens be transported from testing facilities to laboratories for testing? | • Courier
• National mail
• Riders for Health | • Ethiopia sends specimens to laboratories by courier with an agreement between EPHI and the Ethiopian Postal Enterprise Service
• Kenya sends specimens to laboratories by courier
• Swaziland utilizes refrigerated cars to support national sample transport, and is exploring back-up options (e.g. DHL courier) |
| 12. How will results be returned from the laboratory back to testing facilities? | • Physical (tangible) return of written results
• SMS printer
• Email message
• Online database | • Ethiopia uses SMS printers and courier
• Kenya uses an online database (www.nascop.org)
• Malawi's electronic medical record system is capable of receiving/recording test results directly from the laboratory; they also utilize a log book to track all specimens
• Swaziland is considering two options for national roll-out: laboratory information strategy that allows for communication between laboratories and facilities, or result print-out (paper) and return
• Zambia is developing a SMS platform specifically for EID test results |
| 13. How will results be shared with patients and/or caregivers? | • Physical (tangible) return of written results
• SMS printer
• Email message
• Phone
• Online database | • South Africa is piloting an SMS platform to return test results to patients
• Swaziland is considering two options for national roll-out: telephone or SMS to instruct patients to return to facility |
| 14. Who can authorize the switch to second line regimens? | • Central decision-making committee
• Physicians only
• Physicians and nurses
• Facility team | • Ethiopia uses physician-led multi-disciplinary teams at the facility level
• Kenya trains clinicians on identifying first-line treatment failure and initiating second-line regimens; facility-based multi-disciplinary teams make the final decision to switch to second-line, in collaboration with trained clinicians
• Kenya has a National HIV Clinical Support Center that records second-line treatment failure cases for review and approval of drug resistance testing; switch to third-line regimens is based on results of drug resistance testing
• Mozambique uses a central committee that approves all switches
• Swaziland uses multidisciplinary teams (physician, ART nurse, laboratory liaison, pharmacist and adherence counselor) at each facility to discuss and agree on when to switch to second-line regimens; genotyping prior to |
Key Strategic Decisions

<table>
<thead>
<tr>
<th></th>
<th>Common Options</th>
<th>Country Examples</th>
</tr>
</thead>
</table>
| 15. What will be the schedule for providing enhanced adherence counseling? | • Standardized frequency | • Kenya’s National Toolkit on Adherence Support guides the provision of EAC.
• Swaziland provides EAC to all patients with viral load results >1,000 copies/mL. |
| 16. What content will be included in enhanced adherence counseling? | • Standardized content
• Tailored content for priority patients | • Kenya’s National Toolkit on Adherence Support guides the provision of EAC.
• Swaziland employs Expert Clients to provide Stepped-Up Adherence Counseling (SUAC) to patients with viral load results >1,000 copies/mL until an improvement in adherence is observed.
• Swaziland’s Ministry of Health is developing SOPs for provision of EAC. |
| 17. How will patients be involved in generating demand for routine viral load testing? | • Technical working group
• Coalition
• Civil society organization | • Kenya has civil society organizations led by the National Empowerment Network of PLHIV in Kenya (NEPHAK) and the Women Fighting AIDS in Kenya (WOFAK); and uses patient education in the facility and community to foster demand.
• Health Communication Capacity Collaborative (HC3) in Swaziland provides community-based programming to communities and high-risk groups to increase demand for viral load services. |
| 18. How will clinicians be involved in generating demand for routine viral load testing? | • Technical working group
• Training
• Targeted messaging | • Ethiopia facilitates regional two-day trainings to review the Viral Load Sensitization Package (those trained are expected to pass along learnings to facility staff).
• Kenya’s National AIDS & STI Control Program (NASCOP) has an HIV-integrated curriculum for clinicians, which includes a case-based orientation package; CMEs, mentorship and Project ECHO are also used.
• Malawi is building clinician prompts into their national electronic medical record to remind clinicians when a patient is due for viral load testing. |
| 19. What policies, strategies and/or interventions will ensure that routine viral load test results are utilized by clinicians? | • Mentorship
• Quality assurance
• High viral load register | • Ethiopia employs Clinical Mentors to ensure physicians properly follow-up on test results.
• Kenya uses data-driven mentorship.
• Swaziland utilizes SIMS findings and clinical mentorship to provide feedback to clinicians on their use of viral load test results; they also monitor progress along the cascade with a High Viral Load Register. |
<p>| 20. Who is responsible for forecasting for second line | • Supply chain management group | • Ethiopia’s national Pharmaceutical Fund & Supply Agency is responsible for supply chain management and forecasting. |</p>
<table>
<thead>
<tr>
<th>Key Strategic Decisions</th>
<th>Common Options</th>
<th>Country Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>regimens?</td>
<td></td>
<td>Kenya projects annually</td>
</tr>
</tbody>
</table>
| 21. How do you define treatment failure? | • Viral load >1,000 copies/mL
• Viral load >400 copies/mL | • Kenya defines treatment failure as viral load test results at or above 1,000 copies/mL for two tests within a three month interval following at least six months of ART (with enhanced adherence counseling between measurements) |